
ExpressionGenesis: Automated Disease Annotation 
and Metadata Generation for the Gene Expression 
Omnibus Using Large Language Models 
Daniel R. Spohn, M.S. 
Graduate Program in Bioinformatics, Brandeis University, Waltham, MA, USA 
Corresponding Author: dspohn@gmail.com 
 

Abstract 
 
Public repositories, such as the Gene Expression Omnibus (GEO), host hundreds of thousands 
of transcriptomic datasets. However, inconsistent and unstructured metadata limit their reuse 
and integration. We developed ExpressionGenesis, an automated platform that generates 
standardized, ontology-linked metadata for GEO Series (GSE) records using large language 
models (LLMs) and retrieval-augmented generation (RAG). ExpressionGenesis extracts 
structured information, including disease names, experimental design, study summaries, and 
keywords, from free-text GEO metadata and validates disease annotations using the Disease 
Ontology (DO). The system is implemented on Amazon Web Services (AWS) with a fully 
serverless architecture combining Lambda, Step Functions, and Athena for data processing, 
and a Next.js web interface on AWS Amplify for interactive exploration. Evaluation of 200 GEO 
Series demonstrates that ExpressionGenesis achieves higher accuracy and F1-scores than 
previous NLP-based annotation methods. The public web application 
(https://expressiongenesis.com) provides a searchable interface for enriched GEO metadata 
and submission trends, and a downloadable CSV of disease annotations for all indexed GEO 
Series. These results show that LLMs, combined with ontology-grounded validation, can 
generate accurate, standardized disease annotations for GEO Series, thereby supporting 
improved accessibility and reusability of publicly available gene expression data. 
 
Keywords: Gene Expression Omnibus; metadata curation; disease annotation; large language 
models; retrieval-augmented generation; Disease Ontology. 

Introduction  
High-throughput gene expression technologies have generated a large volume of data, creating 
a significant opportunity for meta-analysis, reproducibility studies, and data reuse. The Gene 
Expression Omnibus (GEO) database is one of the largest public repositories (Edgar et al., 
2002). As of December 2025, ExpressionGenesis has indexed over 268,000 publicly available 
GEO Series entries (Figure 1). A GEO Series is a researcher-submitted record that provides a 
summary of a gene expression study and links together samples. GEO serves as a vital 

 



resource for researchers to discover existing gene expression datasets for further analysis and 
investigation. Reusing these datasets not only accelerates scientific discovery but also 
maximizes the value of publicly funded research. 
 

 
Figure 1. Cumulative number of GEO Series (GSE) submissions as of December 2025.  

 
GEO presents usability challenges because much of its metadata is unstructured, inconsistently 
populated, and stored as free-text. These inconsistencies can hinder researchers from 
identifying relevant datasets, leading to an underutilization of GEO’s full potential.  
 
Tools and methods that enable researchers to discover and interpret GEO datasets can 
increase the likelihood of dataset reuse. Several prior tools have aimed to improve GEO dataset 
discovery. Projects such as GEOMetaCuration (Li et al., 2018), ALE (Giles et al., 2017), 
CREEDS (Wang et al., 2016), and ReGEO (Chen et al., 2019) have been created to support the 
discovery of existing GEO datasets and to enrich GEO metadata through manual or automated 
measures. However, many of these tools are no longer maintained or accessible. For instance, 
the GEOMetaCuration website is no longer accessible, and ReGEO was last updated in 2018. 
 
Manual curation, while valuable, is not scalable given the vast number of GEO Series entries. 
For example, the CREEDS project by Wang et al. used a crowdsourcing effort to annotate a few 
thousand GEO Series (Wang et al., 2016). Automated approaches for generating structured 
metadata offer an approachable alternative to manually annotating all GEO Series. This 
annotation can improve the searchability and interpretability of GEO entries. In particular, 
structured metadata points such as disease names and experimental design descriptions can 
significantly enhance dataset discoverability. 

 



 
A challenge in identifying similar transcriptomic datasets is the differing terminology used by 
researchers. The same medical condition can be described as “non-alcoholic fatty liver 
disease”, “metabolic dysfunction-associated steatotic liver disease”, “NAFLD”, and “MASLD”, 
along with many other variations in the researcher-supplied GEO Series descriptions. These 
variations in terminology can make it difficult to identify all relevant GEO entries of a particular 
condition. Diseases and conditions are related and can be classified into broader groups. The 
Disease Ontology (DO) project provides standardized disease names and identifiers (DOIDs) 
along with hierarchical relationships among diseases (Schriml et al., 2022). Mapping the GEO 
Series to DOIDs enables clearer identification of related experiments and supports more 
accurate searches.  
 
ExpressionGenesis is a web-based tool that automates the generation of structured metadata 
from GEO Series using large language models (LLMs). ExpressionGenesis supports dataset 
discovery by extracting standardized metadata, including disease annotations, summaries, 
experimental design, and keywords, making them available within a web user interface. 
Compared to prior tools, ExpressionGenesis provides a scalable, automated, and continuously 
updating solution for enriching GEO metadata. 
 

Methods 

Implementation Overview 
 
For scalability, ExpressionGenesis was built and deployed on Amazon Web Services (AWS). All 
processing runs on a serverless infrastructure to reduce maintenance. The processing code is 
written in Python and executes in AWS Lambda and AWS Step Functions, eliminating the need 
for server management. Data integration is performed using AWS Athena and SQL. The web 
application is a Next.js application that runs on AWS Amplify with data served by DynamoDB. 
Large language models are accessed using AWS Bedrock. Production metadata generation in 
ExpressionGenesis uses the Meta Llama 3.3 70B instruct model via Bedrock (model identifier: 
us.meta.llama3-3-70b-instruct-v1:0). 
 

 



 
Figure 2. Technical overview of ExpressionGenesis  

 

Data Sources 

Gene Expression Omnibus (GEO) 
 
ExpressionGenesis processes GEO Series (GSE) and sample (GSM) data. This data is 
retrieved using Biopython (Cock et al., 2009) and GEOparse. Biopython accesses the NCBI 
Entrez API to obtain a list of publicly available GSE entries. GEOparse downloads and parses 
the associated SOFT files from the NCBI SFTP server to extract detailed metadata for individual 
GEO Series. 
 
Each GSE entry includes information such as: 

●​ GSE ID 
●​ Title 
●​ Submission and publication dates 
●​ Summary (free text) 
●​ Overall Experimental Design (free text) 
●​ Associated GSM sample metadata 
●​ Associated PubMed article IDs 

 



 
Figure 3. Biopython and GEOparse are used to extract GEO Series data from NCBI 

 

Disease Ontology 
 
The Disease Ontology (DO) database offers standardized human disease terms, unique 
identifiers (DOIDs), and a hierarchical structure that categorizes diseases. DO terms enable 
consistent annotation of disease information.  
 
A Python process was written to download the human DO data from the Disease Ontology 
GitHub repository. The December 2024 release of the Disease Ontology was used for the initial 
version of ExpressionGenesis, as it was the latest version available at the time of the 
application's development. New versions of DO will be incorporated in future 
ExpressionGenesis updates. 
 

Metadata Generation 
 
ExpressionGenesis uses LLMs to generate structured metadata from the free-text fields of GEO 
entries. These foundational models are accessed via AWS Bedrock and are prompted to 
generate standardized summaries, disease annotations, experimental design details, and 
keyword lists in a JSON format. 
 

 



A standardized prompt is used to ensure consistency across LLM output responses. The prompt 
specifies the required fields and includes formatting instructions to help ensure a consistent 
JSON output. The prompt requests: 

●​ Summary of the experiment 
●​ Keywords 
●​ Experimental design (study type, groups, sample size, comparisons) 
●​ Disease information (name, DOID, stage) 

 
Additionally, the prompt requests that fields that cannot be determined should be omitted from 
the output.  
You are a bioinformatics metadata expert. 

Your task is to analyze the provided GEO (Gene Expression Omnibus) experiment series and extract structured and standardized 

metadata fields. 

 

You will provide this structured metadata in a single JSON object. 

 

Return only the JSON object without additional explanation. If a field cannot be determined from the provided series 

information, omit it from the JSON rather than including null or placeholder values. 

 

Format: Pure JSON output 

Rules: 

- Only output valid JSON 

- No explanatory text 

- No markdown formatting 

- No code blocks or backtick 

 

Format dates as YYYY-MM-DD and standardize units to SI format. 

 

For each GEO Series experiment provided, return a JSON object with the following fields: 

 

- metadata: 

  - GSE_ID: static value of {gse_id} 

  - date_of_entry: set to date of the GEO entry 

  - current_date: static value of {current_date} 

  - model_name: static value of {model_name} 

- summary: 7-12 sentence summary of the experiment that covers: 

  - The main goal/purpose 

  - Key experimental conditions 

  - The type of analysis performed 

  - Any notable genes or pathways studied 

  - The technology used to generate the dataset (RNA-seq, DNA-seq, ChIP-seq, ATAC-seq, etc.) 

  - Mention the species and disease/phenotype studied (if applicable) 

- keywords: provide a list (array) of keywords 

- experimental_design: 

  - type: Categorize as one of [Case-Control, Time Series, Treatment-Control, Longitudinal, Cross-sectional, Dose-response] 

  - groups: Array of group descriptions 

  - treatment_groups 

  - control_groups 

  - experimental conditions 

  - sample_size: Object with group sizes if specified 

  - comparison: String describing the specific comparison 

- disease: Array of objects for diseases mentioned in the description (if applicable): 

  - name: Standardized human disease name - only if the text explicitly describes or strongly implies a human disease condition 

affecting the organism under study. 

  - do_ontology_id: Human Disease Ontology ID (DOID) related to name 

  - stage: Disease stage/progression if specified 

 

 



Figure 4. Prompt template used in ExpressionGenesis  
 
The prompt template is then followed by GEO Series metadata for an individual GEO entry so 
that the LLM can produce the requested output. 
 

title: Spatio-temporal interaction of immune and renal cells determines glomerular crescent formation in 
autoimmune kidney disease 
gse_id: GSE294965 
publication_date: 2025-05-30 
submission_date: 2025-04-17 
summary: Rapidly progressive glomerulonephritis (RPGN) is the most aggressive group of autoimmune kidney 
disease with the worst prognosis. Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis, 
anti-glomerular basement membrane (anti-GBM) and lupus nephritis are the most common causes of RPGN and 
are characterized by the formation of glomerular crescents and infiltration of leukocytes that eventually lead to 
glomerulosclerosis and kidney failure.    In this work, we used high-resolution spatial transcriptomics of 32 ANCA, 
19 lupus nephritis, 6 anti-GBM, and 6 control patients to understand how intercellular signaling between immune 
and renal tissue cells leads to renal inflammation and glomerular injury. Using 3,218,210 immune and kidney cells, 
we observed that the biological pathways involved in the sequence of glomerular crescent formation are similar 
across the diseases. While innate immune cells infiltrated the glomerular compartment relatively early, later 
increases in adaptive immune cells were largely restricted to the periglomerular regions. These changes in 
immune cells temporally correlated with increases in glomerular parietal epithelial (PEC) and fibrotic mesangial 
cells, suggesting disease-relevant functional signaling between these immune and renal cells. Cell communication 
analysis revealed early disease PDGF signaling from epithelial and mesangial cells to PECs, causing their 
activation and proliferation. At later stages, TGF-β signaling from macrophages, T cells, epithelial cells, and 
mesangial cells to PECs triggered the expression of extracellular matrix components resulting in 
glomerulosclerosis.    Our results highlight a spatio-temporally conserved progression into glomerular crescents 
and sclerosis for ANCA, lupus nephritis, and anti-GBM disease, which is driven by consecutive PDGF and TGF-β 
signaling to PECs. 
overall_design: 8 slides containing 63 samples (biopsies from 32 ANCA, 19 lupus nephritis, 6 anti-GBM, and 
healthy tissues from tumor nephrectomies of 6 control patients) were analyzed with Xenium to capture RNA. One 
additional slide (Sample: 0011186) was used for Xenium + phenocycler run. 
sample type: RNA 
number of samples: 9 
organism: Homo sapiens 
data processing: Baysor (v0.6.2) was used to re-segment cells with prior being default segmentations 
(cell_boundaries.parquet). Scanpy (v1.10.1) workflows were used for normalization to the median the downstream 
analysis. 
sample molecule: total RNA 
Protocols Used: 
treatment: 
sample growth: 
extract: 5 μm sections were taken for Xenium. 
label: Xenium Human Probe Set 
scan: Xenium In Situ Analyzer 
 
 

Figure 5. Example of GEO information provided along with the prompt to the LLM. This example is for GSE ID: GSE294965 

 

Benchmark dataset 
Disease-annotation performance was evaluated using a benchmark of 200 GEO Series 
originally curated by Chen et al. as part of their GEO disease-annotation work. Each Series in 
this dataset is labeled as either having at least one associated disease term or no disease, and 
disease-positive Series are annotated with one or more DOID identifiers. From the Chen et al. 

 



dataset, a table was constructed with one row per GEO Series (GSE ID) and the following 
fields: a Boolean flag indicating whether any disease is present (Disease (TRUE/FALSE)), and a 
semicolon-separated list of gold-standard DOIDs for disease-positive Series (for example, 
DOID:3393;DOID:0050828).This dataset was supplemented with additional DOIDs for relevant 
disease classifications.​
 
In total, the benchmark contains: 

●​ 200 GEO Series, 
●​ 86 disease-positive Series (at least one DOID), and 
●​ 114 disease-negative Series (no disease DOID assigned).​

 
This table is treated as the ground truth for disease presence and DOID assignments in all 
evaluations. 

Model outputs and DOID normalization 
For each of the 200 Series five methods were evaluated. The Chen et al. disease-annotation 
baseline, using the DOIDs and disease labels reported in their work, and the four LLM-based 
pipelines implemented in ExpressionGenesis (Claude 3.7 Sonnet, DeepSeek R1, Meta Llama 
3.3 70B instruct, Meta Llama 3.2 11B instruct).​
 
Each large language model pipeline consumes a structured prompt that includes the GEO 
Series title, summary, overall design, and related metadata, and returns one or more disease 
candidates together with candidate Disease Ontology IDs. For the experiments in this section, 
the focus is on series-level disease classification: whether a method correctly identifies at least 
one appropriate DOID for a disease-positive Series and avoids assigning disease to 
disease-negative Series. 
 
For each model and each Series, predictions are represented as a set of DOIDs. A Series with 
no predicted DOID is treated as a negative prediction (“no disease”). For the gold standard, 
each Series likewise has either a non-empty set of DOIDs (disease-positive) or an empty set 
(disease-negative). 
 

Addressing LLM Limitations with Retrieval Augmented Generation (RAG) 
 
While large language models worked well in generating summaries, keywords, and identifying 
disease names, they occasionally introduced errors. These errors can be referred to as either 
hallucinations or misclassifications. Errors encountered included inaccurate DOIDs, as well as 
the LLM proposing diseases unrelated to human disease.  
 
Among the disease-positive Series in the Chen et al. evaluation set, the LLM incorrectly 
associated (or hallucinated) a DOID that did not match the disease name in approximately 58% 
of cases. In other words, 58% of the DOIDs initially returned by the model did not correspond to 

 



the disease name identified by the model, based on the Disease Ontology ground truth. To 
reduce these errors, a retrieval augmented generation (RAG) approach was implemented to 
look up DOIDs. RAG approaches have been shown to reduce the frequency of LLM 
hallucinations and provide factual context to LLMs (Lewis et al., 2021).  
 
A two-step process for structured metadata generation was implemented: 
 

1.​ Initial Pass: The model generates an initial draft of structured metadata using the 
standardized prompt and GEO entry information. 

2.​ RAG-based Disease Ontology Mapping: Each disease term from the draft is evaluated 
against the Disease Ontology using a secondary LLM request supported by a RAG 
knowledge base. This step corrects or confirms DOIDs and helps to ensure that the 
disease name is standardized and aligns with human biology. 

 
The RAG-based strategy reduced hallucinated DOIDs and improved the standardization of 
disease names. 
 

 
Figure 6. The two-step approach of structured metadata generation using LLMs and RAG 

 



{ 
  "metadata": { 
    "GSE_ID": "GSE294965", 
    "date_of_entry": "2025-04-17", 
    "current_date": "2025-06-01 18:50:23", 
    "model_name": "us.meta.llama3-3-70b-instruct-v1:0" 
  }, 
  "summary": "This study investigates the spatio-temporal interaction of immune and renal cells in autoimmune kidney disease, 
specifically in rapidly progressive glomerulonephritis (RPGN). The researchers used high-resolution spatial transcriptomics to 
analyze 63 samples from 32 ANCA, 19 lupus nephritis, 6 anti-GBM, and 6 control patients. They observed that the biological 
pathways involved in glomerular crescent formation are similar across the diseases, with innate immune cells infiltrating the 
glomerular compartment early and adaptive immune cells increasing in the periglomerular regions later. The study highlights a 
conserved progression into glomerular crescents and sclerosis driven by consecutive PDGF and TGF-β signaling to parietal 
epithelial cells. The technology used to generate the dataset is spatial transcriptomics using Xenium. The species studied is 
Homo sapiens, and the diseases studied are ANCA-associated vasculitis, lupus nephritis, and anti-glomerular basement 
membrane disease.", 
  "disease": [ 
    { 
      "name": "rapidly progressive glomerulonephritis", 
      "confirmed_name": "rapidly progressive glomerulonephritis", 
      "confirmed_do_ontology_id": "DOID:4776" 
    }, 
    { 
      "name": "anti-glomerular basement membrane disease", 
      "confirmed_name": "Goodpasture syndrome", 
      "confirmed_do_ontology_id": "DOID:9808" 
    }, 
    { 
      "name": "lupus nephritis", 
      "confirmed_name": "lupus nephritis", 
      "confirmed_do_ontology_id": "DOID:0080162" 
    } 
  ], 
  "keywords": [ 
    "autoimmune kidney disease", 
    "rapidly progressive glomerulonephritis", 
    "spatial transcriptomics", 
    "Xenium", 
    "PDGF signaling", 
    "TGF-β signaling", 
    "parietal epithelial cells" 
  ], 
  "experimental_design": { 
    "type": "Case-Control", 
    "groups": [ 
      "ANCA-associated vasculitis", 
      "lupus nephritis", 
      "anti-glomerular basement membrane disease", 
      "control patients" 
    ], 
    "treatment_groups": [], 
    "control_groups": [ 
      "control patients" 
    ], 
    "experimental_conditions": [], 
    "sample_size": { 
      "ANCA": 32, 
      "lupus nephritis": 19, 
      "anti-GBM": 6, 
      "control": 6 
    }, 
    "comparison": "Disease groups vs. control group" 
  } 
} 

Figure 7. Example response after RAG 

 

 



Results 

Disease Information Evaluation 
 
To evaluate disease annotation, ExpressionGenesis was run on the 200 GEO Series 
benchmark from Chen et al., described earlier. For each Series, the manually curated Disease 
Ontology identifiers from Chen et al. were treated as the ground truth. Predictions from 
ExpressionGenesis and from the Chen et al. method were compared at the Series level using 
the accuracy, precision, recall, and F1 metrics defined above. Results are reported for four LLM 
models: Claude 3.7 Sonnet, DeepSeek R1, Meta Llama 3.3 (70 billion parameters), and Meta 
Llama 3.2 (11 billion parameters). 
 

Model Evaluation 

All four tested models (Claude 3.7 Sonnet, DeepSeek R1, Meta Llama 3.3 70B, and Meta Llama 
3.2 11B) were evaluated using the complete two-step RAG approach described previously. Each 
model first generated initial structured metadata, then disease terms were validated against the 
Disease Ontology using the RAG-based correction step. The evaluation results in Figure 9 
reflect the performance of each model after RAG validation. 

 

Classification rule and metrics 
Disease annotation was evaluated at the Series level using a confusion matrix with two actual 
classes (disease present vs disease absent) and three prediction outcomes (disease correct, 
disease incorrect, and no disease), as summarized in Figure 8. 
 
A Series was considered as disease-positive (disease present) in the gold standard if its DOID 
set was non-empty, and disease-negative (disease absent) otherwise. For each method, 
predictions for a Series fell into one of three categories: 

●​ Disease correct: the method returned at least one DOID, and at least one of those 
DOIDs matched a DOID in the gold-standard set for that Series. These cases were 
counted as true positives (TP). 

●​ Disease incorrect: the method returned one or more DOIDs, but none of the predicted 
DOIDs appeared in the gold-standard set for that Series. For disease-present Series, 
these cases were treated as false negatives (FN) for the missed true disease and as 
false positives (FP) for the incorrect DOID assignment. For disease-absent Series, any 
predicted DOID was counted as an FP. In other words, a DOID prediction was counted 
as a false positive whenever it was not one of the DOIDs in the TRUE set. 

●​ No disease: the method did not return any DOID for that Series. For disease-present 
Series, these cases were counted as false negatives (FN); for disease-absent Series, 

 



they were counted as true negatives (TN).​
 

This rule naturally handles Series annotated with multiple diseases: a Series with multiple 
gold-standard DOIDs is counted as a true positive if at least one of those DOIDs is returned. 
 

 
Figure 8. Evaluation confusion matrix 

 
From the aggregated counts of TP, FP, FN, and TN, standard classification metrics were 
computed: 

●​ Accuracy =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

●​ Precision =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

●​ Recall =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

●​ F1 Score =   2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

 
All metrics were micro-averaged across the 200 Series. 

Evaluation Results 
 
 Chen et al. claude-3-7-sonnet deepseek-r1 llama-3-3-70b llama3-2-11b 

Accuracy 0.86000 0.90000 0.89500 0.88500 0.76000 

Precision 0.84722 0.88750 0.84615 0.84091 0.57692 

Recall 0.78205 0.86585 0.91667 0.89157 0.93750 

F1 Score 0.81333 0.87654 0.88000 0.86550 0.71429 

Figure 9. Evaluation results of disease annotation 

 
 
Claude 3.7 Sonnet, DeepSeek R1, and Llama 3.3 (70b) outperformed Chen et al. in terms of 
accuracy and F1 Score. Among the best performers, Llama 3.3 (70b) was the most 
cost-effective to scale, and was selected as the production model for metadata generation in 
ExpressionGenesis. 
 

User Interface 
 

 



The ExpressionGenesis web interface was developed using Next.js and TypeScript. It currently 
offers a main dataset browser, individual detailed GEO entry pages, and a submission trends 
page (Figure 12). Samples of the interface are shown below: 
 
 

 
Figure 10. The main dataset browser page lists all current GEO Series records. It is filterable by keyword and disease name. 

 
 
 

 



 
Figure 11. Individual detail pages provide metadata that combines original GEO text with enriched annotations from 

ExpressionGenesis. 
 

 



 
Figure 12. The submission trends page shows aggregated visualizations of trends in GEO Series submissions over time. 

 

 

 



In addition to interactive browsing, ExpressionGenesis provides a Download page 
(https://www.expressiongenesis.com/downloads) that provides the disease annotations as a 
single CSV file. Each row corresponds to a single disease annotation for a GEO Series and 
includes three columns: gse_id (GEO Series accession), disease_name (standardized disease 
label), and DOID (Disease Ontology identifier).  

Cost and Scalability 
The complete ExpressionGenesis system costs approximately $50 USD per month to maintain 
on AWS, including data processing, LLM inference, RAG validation, and web hosting. Individual 
annotations cost approximately $0.0025 USD per GEO Series entry. Annotating the entire 
current GEO repository of 268,000+ entries (as of Dec 2025) costs about $670 USD in 
computation. 
 
GEO Series submissions have averaged approximately 25,000 new entries per year over the 
past three years. At $0.0025 per entry, annotating new submissions costs roughly $5 per month. 
The serverless architecture automatically scales to handle daily submission volumes without 
manual server management. 
 
By comparison, manual curation at typical research rates would cost hundreds to thousands of 
times more and cannot scale to match GEO's growth rate. This cost efficiency addresses one of 
the limitations faced by prior tools like GEOMetaCuration and ReGEO, which are no longer 
maintained. 

 

Discussion 
 
ExpressionGenesis demonstrates the practical benefits of combining LLMs with RAG to 
standardize and enrich metadata for high-throughput gene expression datasets. This two-step 
approach improves the accuracy of disease annotations by linking predictions to the Disease 
Ontology database, significantly reducing hallucinations and inconsistent terminology. The use 
of unstructured free-text metadata in GEO has posed challenges for dataset discovery and 
reuse. ExpressionGenesis addresses some of these issues by automatically generating 
structured fields, such as disease names, experimental design, and study summaries.  
Compared to previous works that relied on manual curation or rule-based methods, 
ExpressionGenesis provides a scalable, automated pipeline for GEO annotation. Evaluation 
results confirm that LLMs can outperform prior approaches in both precision and recall, resulting 
in fewer false positives and false negatives. These improvements are important given the 
ever-growing size of GEO.  
 
In addition to backend processing, ExpressionGenesis provides an interface for researchers to 
discover valuable datasets. The interface enables users to search and filter by disease and 
keyword, enhancing dataset discoverability. By increasing the structured metadata associated 

 

https://www.expressiongenesis.com/downloads


with GEO Series, ExpressionGenesis enhances the use of GEO for researchers and provides 
new opportunities for meta-analysis and data reuse. 
 

Conclusion 
ExpressionGenesis uses large language models, retrieval-augmented generation, and the 
Disease Ontology to generate standardized metadata for GEO Series. Evaluation on a manually 
curated benchmark shows that LLM-based pipelines can outperform a prior NLP approach for 
disease annotation. The public ExpressionGenesis web application makes these enriched 
annotations available to researchers, improving the ability to search for and reuse GEO 
datasets. 
 

Next Steps 
Future work will focus on expanding the scope of metadata extracted from GEO entries. 
Specifically, future enhancements will include expanded biological attributes such as tissue type 
and cell line identification. As with disease annotations, these attributes can be linked to 
relevant ontological databases to support standardization and semantic interoperability. These 
enhancements will improve dataset filtering and offer new ways to interpret and explore GEO 
entries. 
 
On the website, additional search options will be developed that allow users to filter by 
organism, technological platform, study design, and other new metadata fields. Filtering will also 
be expanded to support ontology-aware queries. This will enable queries to include related 
terms within the ontological hierarchy. For example, a search for the disease “breast cancer” 
could also return results for “progesterone-receptor negative breast cancer”, “breast 
fibrosarcoma”, and other breast cancer subtypes classified under the same parent term. 
 
In addition, similarity-based scoring and dataset recommendation features will be implemented 
to assist researchers in discovering related datasets by comparing study summaries, disease 
terms, and experimental features. Together, these improvements will support exploration and 
reuse of public gene expression data. 
 

Data Availability 
ExpressionGenesis can be accessed at:  
https://www.expressiongenesis.com/ 
 
The ExpressionGenesis disease annotations can be downloaded from the ExpressionGenesis 
Downloads page (https://www.expressiongenesis.com/downloads) 
 

 

https://www.expressiongenesis.com/
https://www.expressiongenesis.com/downloads
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