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Abstract

Public repositories, such as the Gene Expression Omnibus (GEO), host hundreds of thousands
of transcriptomic datasets. However, inconsistent and unstructured metadata limit their reuse
and integration. We developed ExpressionGenesis, an automated platform that generates
standardized, ontology-linked metadata for GEO Series (GSE) records using large language
models (LLMs) and retrieval-augmented generation (RAG). ExpressionGenesis extracts
structured information, including disease names, experimental design, study summaries, and
keywords, from free-text GEO metadata and validates disease annotations using the Disease
Ontology (DO). The system is implemented on Amazon Web Services (AWS) with a fully
serverless architecture combining Lambda, Step Functions, and Athena for data processing,
and a Next.js web interface on AWS Amplify for interactive exploration. Evaluation of 200 GEO
Series demonstrates that ExpressionGenesis achieves higher accuracy and F1-scores than
previous NLP-based annotation methods. The public web application
(https://expressiongenesis.com) provides a searchable interface for enriched GEO metadata
and submission trends, and a downloadable CSV of disease annotations for all indexed GEO
Series. These results show that LLMs, combined with ontology-grounded validation, can
generate accurate, standardized disease annotations for GEO Series, thereby supporting
improved accessibility and reusability of publicly available gene expression data.

Keywords: Gene Expression Omnibus; metadata curation; disease annotation; large language
models; retrieval-augmented generation; Disease Ontology.

Introduction

High-throughput gene expression technologies have generated a large volume of data, creating
a significant opportunity for meta-analysis, reproducibility studies, and data reuse. The Gene
Expression Omnibus (GEQ) database is one of the largest public repositories (Edgar et al.,
2002). As of December 2025, ExpressionGenesis has indexed over 268,000 publicly available
GEO Series entries (Figure 1). A GEO Series is a researcher-submitted record that provides a
summary of a gene expression study and links together samples. GEO serves as a vital



resource for researchers to discover existing gene expression datasets for further analysis and
investigation. Reusing these datasets not only accelerates scientific discovery but also
maximizes the value of publicly funded research.
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Figure 1. Cumulative number of GEO Series (GSE) submissions as of December 2025.

GEO presents usability challenges because much of its metadata is unstructured, inconsistently
populated, and stored as free-text. These inconsistencies can hinder researchers from
identifying relevant datasets, leading to an underutilization of GEQO’s full potential.

Tools and methods that enable researchers to discover and interpret GEO datasets can
increase the likelihood of dataset reuse. Several prior tools have aimed to improve GEO dataset
discovery. Projects such as GEOMetaCuration (Li et al., 2018), ALE (Giles et al., 2017),
CREEDS (Wang et al., 2016), and ReGEO (Chen et al., 2019) have been created to support the
discovery of existing GEO datasets and to enrich GEO metadata through manual or automated
measures. However, many of these tools are no longer maintained or accessible. For instance,
the GEOMetaCuration website is no longer accessible, and ReGEO was last updated in 2018.

Manual curation, while valuable, is not scalable given the vast number of GEO Series entries.
For example, the CREEDS project by Wang et al. used a crowdsourcing effort to annotate a few
thousand GEO Series (Wang et al., 2016). Automated approaches for generating structured
metadata offer an approachable alternative to manually annotating all GEO Series. This
annotation can improve the searchability and interpretability of GEO entries. In particular,
structured metadata points such as disease names and experimental design descriptions can
significantly enhance dataset discoverability.



A challenge in identifying similar transcriptomic datasets is the differing terminology used by
researchers. The same medical condition can be described as “non-alcoholic fatty liver
disease”, “metabolic dysfunction-associated steatotic liver disease”, “NAFLD”, and “MASLD”,
along with many other variations in the researcher-supplied GEO Series descriptions. These
variations in terminology can make it difficult to identify all relevant GEO entries of a particular
condition. Diseases and conditions are related and can be classified into broader groups. The
Disease Ontology (DO) project provides standardized disease names and identifiers (DOIDs)
along with hierarchical relationships among diseases (Schriml et al., 2022). Mapping the GEO
Series to DOIDs enables clearer identification of related experiments and supports more

accurate searches.

ExpressionGenesis is a web-based tool that automates the generation of structured metadata
from GEO Series using large language models (LLMs). ExpressionGenesis supports dataset
discovery by extracting standardized metadata, including disease annotations, summaries,
experimental design, and keywords, making them available within a web user interface.
Compared to prior tools, ExpressionGenesis provides a scalable, automated, and continuously
updating solution for enriching GEO metadata.

Methods
Implementation Overview

For scalability, ExpressionGenesis was built and deployed on Amazon Web Services (AWS). All
processing runs on a serverless infrastructure to reduce maintenance. The processing code is
written in Python and executes in AWS Lambda and AWS Step Functions, eliminating the need
for server management. Data integration is performed using AWS Athena and SQL. The web
application is a Next.js application that runs on AWS Amplify with data served by DynamoDB.
Large language models are accessed using AWS Bedrock. Production metadata generation in
ExpressionGenesis uses the Meta Llama 3.3 70B instruct model via Bedrock (model identifier:
us.meta.llama3-3-70b-instruct-v1:0).
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Figure 2. Technical overview of ExpressionGenesis

Data Sources

Gene Expression Omnibus (GEO)

ExpressionGenesis processes GEO Series (GSE) and sample (GSM) data. This data is
retrieved using Biopython (Cock et al., 2009) and GEOparse. Biopython accesses the NCBI
Entrez API to obtain a list of publicly available GSE entries. GEOparse downloads and parses
the associated SOFT files from the NCBI SFTP server to extract detailed metadata for individual
GEO Series.

Each GSE entry includes information such as:
e GSEID

Title

Submission and publication dates

Summary (free text)

Overall Experimental Design (free text)

Associated GSM sample metadata

Associated PubMed article IDs
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Figure 3. Biopython and GEOparse are used to extract GEO Series data from NCBI

Disease Ontology

The Disease Ontology (DO) database offers standardized human disease terms, unique
identifiers (DOIDs), and a hierarchical structure that categorizes diseases. DO terms enable
consistent annotation of disease information.

A Python process was written to download the human DO data from the Disease Ontology
GitHub repository. The December 2024 release of the Disease Ontology was used for the initial
version of ExpressionGenesis, as it was the latest version available at the time of the
application's development. New versions of DO will be incorporated in future
ExpressionGenesis updates.

Metadata Generation

ExpressionGenesis uses LLMs to generate structured metadata from the free-text fields of GEO
entries. These foundational models are accessed via AWS Bedrock and are prompted to
generate standardized summaries, disease annotations, experimental design details, and
keyword lists in a JSON format.



A standardized prompt is used to ensure consistency across LLM output responses. The prompt
specifies the required fields and includes formatting instructions to help ensure a consistent
JSON output. The prompt requests:

Summary of the experiment

Keywords

Experimental design (study type, groups, sample size, comparisons)

Disease information (name, DOID, stage)

Additionally, the prompt requests that fields that cannot be determined should be omitted from
the output.

You are a bioinformatics metadata expert.
Your task is to analyze the provided GEO (Gene Expression Omnibus) experiment series and extract structured and standardized

metadata fields.

You will provide this structured metadata in a single JSON object.

Return only the JSON object without additional explanation. If a field cannot be determined from the provided series

information, omit it from the JSON rather than including null or placeholder values.

Format: Pure JSON output
Rules:

- Only output valid JSON
- No explanatory text

- No markdown formatting

- No code blocks or backtick

Format dates as YYYY-MM-DD and standardize units to SI format.

For each GEO Series experiment provided, return a JSON object with the following fields:

- metadata:
- GSE_ID: static value of {gse_id}
- date_of entry: set to date of the GEO entry
- current_date: static value of {current_date}
- model name: static value of {model name}
- summary: 7-12 sentence summary of the experiment that covers:
- The main goal/purpose
- Key experimental conditions
- The type of analysis performed
- Any notable genes or pathways studied
- The technology used to generate the dataset (RNA-seq, DNA-seq, ChIP-seq, ATAC-seq, etc.)
- Mention the species and disease/phenotype studied (if applicable)
- keywords: provide a list (array) of keywords
- experimental design:
- type: Categorize as one of [Case-Control, Time Series, Treatment-Control, Longitudinal, Cross-sectional, Dose-response]
- groups: Array of group descriptions
- treatment_groups
- control groups
- experimental conditions
- sample size: Object with group sizes if specified
- comparison: String describing the specific comparison
- disease: Array of objects for diseases mentioned in the description (if applicable):
- name: Standardized human disease name - only if the text explicitly describes or strongly implies a human disease condition
affecting the organism under study.
- do_ontology_id: Human Disease Ontology ID (DOID) related to name

- stage: Disease stage/progression if specified




Figure 4. Prompt template used in ExpressionGenesis

The prompt template is then followed by GEO Series metadata for an individual GEO entry so
that the LLM can produce the requested output.

title: Spatio-temporal interaction of immune and renal cells determines glomerular crescent formation in
autoimmune kidney disease

gse_id: GSE294965

publication_date: 2025-05-30

submission_date: 2025-04-17

summary: Rapidly progressive glomerulonephritis (RPGN) is the most aggressive group of autoimmune kidney
disease with the worst prognosis. Anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis,
anti-glomerular basement membrane (anti-GBM) and lupus nephritis are the most common causes of RPGN and
are characterized by the formation of glomerular crescents and infiltration of leukocytes that eventually lead to
glomerulosclerosis and kidney failure. In this work, we used high-resolution spatial transcriptomics of 32 ANCA,
19 lupus nephritis, 6 anti-GBM, and 6 control patients to understand how intercellular signaling between immune
and renal tissue cells leads to renal inflammation and glomerular injury. Using 3,218,210 immune and kidney cells,
we observed that the biological pathways involved in the sequence of glomerular crescent formation are similar
across the diseases. While innate immune cells infiltrated the glomerular compartment relatively early, later
increases in adaptive immune cells were largely restricted to the periglomerular regions. These changes in
immune cells temporally correlated with increases in glomerular parietal epithelial (PEC) and fibrotic mesangial
cells, suggesting disease-relevant functional signaling between these immune and renal cells. Cell communication
analysis revealed early disease PDGF signaling from epithelial and mesangial cells to PECs, causing their
activation and proliferation. At later stages, TGF-f3 signaling from macrophages, T cells, epithelial cells, and
mesangial cells to PECs triggered the expression of extracellular matrix components resulting in
glomerulosclerosis. Our results highlight a spatio-temporally conserved progression into glomerular crescents
and sclerosis for ANCA, lupus nephritis, and anti-GBM disease, which is driven by consecutive PDGF and TGF-
signaling to PECs.

overall_design: 8 slides containing 63 samples (biopsies from 32 ANCA, 19 lupus nephritis, 6 anti-GBM, and
healthy tissues from tumor nephrectomies of 6 control patients) were analyzed with Xenium to capture RNA. One
additional slide (Sample: 0011186) was used for Xenium + phenocycler run.

sample type: RNA

number of samples: 9

organism: Homo sapiens

data processing: Baysor (v0.6.2) was used to re-segment cells with prior being default segmentations
(cell_boundaries.parquet). Scanpy (v1.10.1) workflows were used for normalization to the median the downstream
analysis.

sample molecule: total RNA

Protocols Used:

treatment:

sample growth:

extract: 5 ym sections were taken for Xenium.

label: Xenium Human Probe Set

scan: Xenium In Situ Analyzer

Figure 5. Example of GEO information provided along with the prompt to the LLM. This example is for GSE ID: GSE294965

Benchmark dataset

Disease-annotation performance was evaluated using a benchmark of 200 GEO Series
originally curated by Chen et al. as part of their GEO disease-annotation work. Each Series in
this dataset is labeled as either having at least one associated disease term or no disease, and
disease-positive Series are annotated with one or more DOID identifiers. From the Chen et al.



dataset, a table was constructed with one row per GEO Series (GSE ID) and the following
fields: a Boolean flag indicating whether any disease is present (Disease (TRUE/FALSE)), and a
semicolon-separated list of gold-standard DOIDs for disease-positive Series (for example,
DOID:3393;D0ID:0050828).This dataset was supplemented with additional DOIDs for relevant
disease classifications.

In total, the benchmark contains:
e 200 GEO Series,
e 86 disease-positive Series (at least one DOID), and
e 114 disease-negative Series (no disease DOID assigned).

This table is treated as the ground truth for disease presence and DOID assignments in all
evaluations.

Model outputs and DOID normalization

For each of the 200 Series five methods were evaluated. The Chen et al. disease-annotation

baseline, using the DOIDs and disease labels reported in their work, and the four LLM-based

pipelines implemented in ExpressionGenesis (Claude 3.7 Sonnet, DeepSeek R1, Meta Llama
3.3 70B instruct, Meta Llama 3.2 11B instruct).

Each large language model pipeline consumes a structured prompt that includes the GEO
Series title, summary, overall design, and related metadata, and returns one or more disease
candidates together with candidate Disease Ontology IDs. For the experiments in this section,
the focus is on series-level disease classification: whether a method correctly identifies at least
one appropriate DOID for a disease-positive Series and avoids assigning disease to
disease-negative Series.

For each model and each Series, predictions are represented as a set of DOIDs. A Series with
no predicted DOID is treated as a negative prediction (“no disease”). For the gold standard,
each Series likewise has either a non-empty set of DOIDs (disease-positive) or an empty set
(disease-negative).

Addressing LLM Limitations with Retrieval Augmented Generation (RAG)

While large language models worked well in generating summaries, keywords, and identifying
disease names, they occasionally introduced errors. These errors can be referred to as either
hallucinations or misclassifications. Errors encountered included inaccurate DOIDs, as well as
the LLM proposing diseases unrelated to human disease.

Among the disease-positive Series in the Chen et al. evaluation set, the LLM incorrectly
associated (or hallucinated) a DOID that did not match the disease name in approximately 58%
of cases. In other words, 58% of the DOIDs initially returned by the model did not correspond to



the disease name identified by the model, based on the Disease Ontology ground truth. To
reduce these errors, a retrieval augmented generation (RAG) approach was implemented to
look up DOIDs. RAG approaches have been shown to reduce the frequency of LLM
hallucinations and provide factual context to LLMs (Lewis et al., 2021).

A two-step process for structured metadata generation was implemented:

1. Initial Pass: The model generates an initial draft of structured metadata using the
standardized prompt and GEO entry information.

2. RAG-based Disease Ontology Mapping: Each disease term from the draft is evaluated
against the Disease Ontology using a secondary LLM request supported by a RAG
knowledge base. This step corrects or confirms DOIDs and helps to ensure that the
disease name is standardized and aligns with human biology.

The RAG-based strategy reduced hallucinated DOIDs and improved the standardization of
disease names.

GO

Gene Expression Omnibus

\
|

Large Language Model (LLM)
with Retrieval Augmented
Generation (RAG) Knowledge
Base

Prompt for LLM
Metadata from GEO

Large Language Model (LLM)

keywords*

Figure 6. The two-step approach of structured metadata generation using LLMs and RAG



"metadata"; {
"GSE_ID": "GSE294965",
"date_of_entry": "2025-04-17",
"current_date": "2025-06-01 18:50:23",
"model_name": "us.meta.llama3-3-70b-instruct-v1:0"
h
"summary": "This study investigates the spatio-temporal interaction of immune and renal cells in autoimmune kidney disease,
specifically in rapidly progressive glomerulonephritis (RPGN). The researchers used high-resolution spatial transcriptomics to
analyze 63 samples from 32 ANCA, 19 lupus nephritis, 6 anti-GBM, and 6 control patients. They observed that the biological
pathways involved in glomerular crescent formation are similar across the diseases, with innate immune cells infiltrating the
glomerular compartment early and adaptive immune cells increasing in the periglomerular regions later. The study highlights a
conserved progression into glomerular crescents and sclerosis driven by consecutive PDGF and TGF-§ signaling to parietal
epithelial cells. The technology used to generate the dataset is spatial transcriptomics using Xenium. The species studied is

Homo sapiens, and the diseases studied are ANCA-associated vasculitis, lupus nephritis, and anti-glomerular basement
membrane disease.",

"disease": [

"name": "rapidly progressive glomerulonephritis”,
"confirmed_name": "rapidly progressive glomerulonephritis",
"confirmed_do_ontology_id": "DOID:4776"

b

{

"name": "anti-glomerular basement membrane disease",
"confirmed_name": "Goodpasture syndrome",
"confirmed_do_ontology_id": "DOID:9808"

b

{

"name": "lupus nephritis",

"confirmed_name": "lupus nephritis",

"confirmed_do_ontology_id": "DOID:0080162"
}

keywords": [

"autoimmune kidney disease",

"rapidly progressive glomerulonephritis"”,
"spatial transcriptomics",

"Xenium",

"PDGF signaling",

"TGF-B signaling",

"parietal epithelial cells"

]

1
"experimental_design": {
"type": "Case-Control",
"groups": [
"ANCA-associated vasculitis",
"lupus nephritis”,
"anti-glomerular basement membrane disease",
"control patients"
1
"treatment_groups": [],
"control_groups™: [
"control patients"
1
"experimental_conditions": [],
"sample_size": {
"ANCA": 32,
"lupus nephritis™: 19,
"anti-GBM": 6,
"control": 6
}

}

omparison": "Disease groups vs. control group"

}

Figure 7. Example response after RAG




Results
Disease Information Evaluation

To evaluate disease annotation, ExpressionGenesis was run on the 200 GEO Series
benchmark from Chen et al., described earlier. For each Series, the manually curated Disease
Ontology identifiers from Chen et al. were treated as the ground truth. Predictions from
ExpressionGenesis and from the Chen et al. method were compared at the Series level using
the accuracy, precision, recall, and F1 metrics defined above. Results are reported for four LLM
models: Claude 3.7 Sonnet, DeepSeek R1, Meta Llama 3.3 (70 billion parameters), and Meta
Llama 3.2 (11 billion parameters).

Model Evaluation

All four tested models (Claude 3.7 Sonnet, DeepSeek R1, Meta Llama 3.3 70B, and Meta Llama
3.2 11B) were evaluated using the complete two-step RAG approach described previously. Each
model first generated initial structured metadata, then disease terms were validated against the
Disease Ontology using the RAG-based correction step. The evaluation results in Figure 9
reflect the performance of each model after RAG validation.

Classification rule and metrics

Disease annotation was evaluated at the Series level using a confusion matrix with two actual
classes (disease present vs disease absent) and three prediction outcomes (disease correct,
disease incorrect, and no disease), as summarized in Figure 8.

A Series was considered as disease-positive (disease present) in the gold standard if its DOID
set was non-empty, and disease-negative (disease absent) otherwise. For each method,
predictions for a Series fell into one of three categories:

e Disease correct: the method returned at least one DOID, and at least one of those
DOIDs matched a DOID in the gold-standard set for that Series. These cases were
counted as true positives (TP).

e Disease incorrect: the method returned one or more DOIDs, but none of the predicted
DOIDs appeared in the gold-standard set for that Series. For disease-present Series,
these cases were treated as false negatives (FN) for the missed true disease and as
false positives (FP) for the incorrect DOID assignment. For disease-absent Series, any
predicted DOID was counted as an FP. In other words, a DOID prediction was counted
as a false positive whenever it was not one of the DOIDs in the TRUE set.

e No disease: the method did not return any DOID for that Series. For disease-present
Series, these cases were counted as false negatives (FN); for disease-absent Series,



they were counted as true negatives (TN).

This rule naturally handles Series annotated with multiple diseases: a Series with multiple

gold-standard DOIDs is counted as a true positive if at least one of those DOIDs is returned.
Predicted
Actual Disease Correct | Disease Incorrect No Disease
Disease Present TP FP FN
Disease Absent - FP TN
Figure 8. Evaluation confusion matrix
From the aggregated counts of TP, FP, FN, and TN, standard classification metrics were
computed:
_ TP+ TN
e Accuracy = TP+FP +FN+TN
e Precision = ———
TP + FP
- TP
e Recall = PN
_ (Precision X Recall)
* F1Score 2 X (Precision + Recall)
All metrics were micro-averaged across the 200 Series.
Evaluation Results
Chen et al. claude-3-7-sonnet deepseek-r1 llama-3-3-70b llama3-2-11b
Accuracy 0.86000 0.90000 0.89500 0.88500 0.76000
Precision 0.84722 0.88750 0.84615 0.84091 0.57692
Recall 0.78205 0.86585 0.91667 0.89157 0.93750
F1 Score 0.81333 0.87654 0.88000 0.86550 0.71429

Figure 9. Evaluation results of disease annotation

Claude 3.7 Sonnet, DeepSeek R1, and Llama 3.3 (70b) outperformed Chen et al. in terms of

accuracy and F1 Score. Among the best performers, Llama 3.3 (70b) was the most

cost-effective to scale, and was selected as the production model for metadata generation in

ExpressionGenesis.

User Interface




The ExpressionGenesis web interface was developed using Next.js and TypeScript. It currently
offers a main dataset browser, individual detailed GEO entry pages, and a submission trends
page (Figure 12). Samples of the interface are shown below:

o’ ExpressionGenesis

ExpressionGenesis adds Disease Ontology-linked labels to GEO Series (GSEs)
using large language models, so you can quickly find relevant transcriptomic
datasets.

Q_ search GEO Series f Download disease annotations CSV ‘ @ How it works

Try

searching for

(' ALZHEIMER'S DISEASE ‘ TRIPLE-RECEPTOR NEGATIVE BREAST CANCER i PARKINSON'S DISEASE ‘ ("covip-19 \

Disease:
Keyword: Q
Organism: Q
Filters Applied:
Disease: metabolic dysfunction-associated steatotic liver disease X

Transcriptomic profiling of liver tissue from control, DHT-induced PCOS-NAFLD model, and baicalin-treated mice using RNA-
seq

Blhui Jin

September 23, 2025

Overview >

Organism

Mus musculus

Al Keywords

polycystic ovary sy nor ic fatty liver disease baicalin rna-seq mouse model liver transcriptomics
Diseases

polycystic ovary ic dy i it steatotic liver disease

The Effect of Methyl Donors in a Murine Model of MASLD in a Multidisciplinary Study.
angel omar vazquez

September 22, 2025

Overview >

Organism

Mus musculus

Al Keywords

methyl donors masld metabolic dysfunction associated steatotic liver diseases ¢57bl/6j mouse model
dna methylation microarray analysis

Diseases

metabolic dysfunction-associated steatotic liver disease

Figure 10. The main dataset browser page lists all current GEO Series records. It is filterable by keyword and disease name.



< Backto Search

The Effect of Methyl Donors in a Murine Model of MASLD in a
Multidisciplinary Study.

View on GEO ([

B Made Public &) Submitted B Last Updated
September 22, 2025 September 18, 2024 September 23, 2025

Generated Annotations

Generated Summary

This study investigates the effect of methyl donor supplementation on Metabolic Dysfunction Associated Steatotic Liver Diseases
(MASLD) in a C57BL/6J mouse model. The research assesses the efficacy of methyl donor supplementation in mitigating disease
symptoms through epigenetic and metabolic pathways. Global DNA methylation was quantified, and the transcriptome was analyzed
using dual-channel microarrays. The results show increased DNA methylation, normalization in the expression of lipid-related genes, and
hypermethylation of lipogenic genes in mice supplemented with methyl donors. The study used a multidisciplinary approach to
understand the potential of methyl donor supplementation in addressing MASLD. The liver samples were collected from mice fed with
normal diet, high-fat and high-sugar diet, and high-fat and high-sugar diet followed by supplementation with methionine, choline, betaine,
folate, cobalamin, and ZnSO4. The Infinum Mouse Methylation BeadChip Array was used to evaluate methylation, and the SeSame
package in R environment was used for data processing.

Keywords

methyl donors  masld  metabolic dysfunction associated steatotic liver diseases  c57bl/6j mouse model  epigenetic pathways

dna i microarray analysis

Disease Annotations

metabolic dysfunction-associated steatotic liver disease
Disease Ontology Links

metabolic dysfunction-associated steatotic liver disease

DOID:0080208 ) View on DO &

Al Experimental Design

Type
Treatment-Control

Comparison
ND vs. HF vs. MET

Groups
« Normal diet (ND)

« High-fat and high-sugar diet (HF)

« High-fat and high-sugar diet followed by methyl donor supplementation (MET)

Figure 11. Individual detail pages provide metadata that combines original GEO text with enriched annotations from
ExpressionGenesis.



GEO Submission Trends

Explore how GEO Series submissions have grown over time, broken down by
organism, sample size, and more.

Total GEO Series Indexed Submission Trends Over Time
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Figure 12. The submission trends page shows aggregated visualizations of trends in GEO Series submissions over time.



In addition to interactive browsing, ExpressionGenesis provides a Download page
(https://www.expressiongenesis.com/downloads) that provides the disease annotations as a
single CSV file. Each row corresponds to a single disease annotation for a GEO Series and
includes three columns: gse_id (GEO Series accession), disease_name (standardized disease
label), and DOID (Disease Ontology identifier).

Cost and Scalability

The complete ExpressionGenesis system costs approximately $50 USD per month to maintain
on AWS, including data processing, LLM inference, RAG validation, and web hosting. Individual
annotations cost approximately $0.0025 USD per GEO Series entry. Annotating the entire
current GEO repository of 268,000+ entries (as of Dec 2025) costs about $670 USD in
computation.

GEO Series submissions have averaged approximately 25,000 new entries per year over the
past three years. At $0.0025 per entry, annotating new submissions costs roughly $5 per month.
The serverless architecture automatically scales to handle daily submission volumes without
manual server management.

By comparison, manual curation at typical research rates would cost hundreds to thousands of
times more and cannot scale to match GEO's growth rate. This cost efficiency addresses one of
the limitations faced by prior tools like GEOMetaCuration and ReGEO, which are no longer
maintained.

Discussion

ExpressionGenesis demonstrates the practical benefits of combining LLMs with RAG to
standardize and enrich metadata for high-throughput gene expression datasets. This two-step
approach improves the accuracy of disease annotations by linking predictions to the Disease
Ontology database, significantly reducing hallucinations and inconsistent terminology. The use
of unstructured free-text metadata in GEO has posed challenges for dataset discovery and
reuse. ExpressionGenesis addresses some of these issues by automatically generating
structured fields, such as disease names, experimental design, and study summaries.
Compared to previous works that relied on manual curation or rule-based methods,
ExpressionGenesis provides a scalable, automated pipeline for GEO annotation. Evaluation
results confirm that LLMs can outperform prior approaches in both precision and recall, resulting
in fewer false positives and false negatives. These improvements are important given the
ever-growing size of GEO.

In addition to backend processing, ExpressionGenesis provides an interface for researchers to
discover valuable datasets. The interface enables users to search and filter by disease and
keyword, enhancing dataset discoverability. By increasing the structured metadata associated


https://www.expressiongenesis.com/downloads

with GEO Series, ExpressionGenesis enhances the use of GEO for researchers and provides
new opportunities for meta-analysis and data reuse.

Conclusion

ExpressionGenesis uses large language models, retrieval-augmented generation, and the
Disease Ontology to generate standardized metadata for GEO Series. Evaluation on a manually
curated benchmark shows that LLM-based pipelines can outperform a prior NLP approach for
disease annotation. The public ExpressionGenesis web application makes these enriched
annotations available to researchers, improving the ability to search for and reuse GEO
datasets.

Next Steps

Future work will focus on expanding the scope of metadata extracted from GEO entries.
Specifically, future enhancements will include expanded biological attributes such as tissue type
and cell line identification. As with disease annotations, these attributes can be linked to
relevant ontological databases to support standardization and semantic interoperability. These
enhancements will improve dataset filtering and offer new ways to interpret and explore GEO
entries.

On the website, additional search options will be developed that allow users to filter by
organism, technological platform, study design, and other new metadata fields. Filtering will also
be expanded to support ontology-aware queries. This will enable queries to include related
terms within the ontological hierarchy. For example, a search for the disease “breast cancer”
could also return results for “progesterone-receptor negative breast cancer”, “breast
fibrosarcoma”, and other breast cancer subtypes classified under the same parent term.

In addition, similarity-based scoring and dataset recommendation features will be implemented
to assist researchers in discovering related datasets by comparing study summaries, disease
terms, and experimental features. Together, these improvements will support exploration and
reuse of public gene expression data.

Data Availability

ExpressionGenesis can be accessed at:
https://www.expressiongenesis.com/

The ExpressionGenesis disease annotations can be downloaded from the ExpressionGenesis
Downloads page (https://www.expressiongenesis.com/downloads)
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